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SUMMARY 

A new finite element method for solving the time-dependent incompressible Navier-Stokes equations 
with general boundary conditions is presented. The two second-order partial differential equations for 
the vorticity and the stream function are factorized, apart from the non-linear advection term, by 
eliminating the coupling due to  the double spccification on the stream function at (a part of) the 
boundary. This is achieved by reducing the no-slip boundary conditions to  projection integral 
conditions for the vorticity field and by evaluating the relevant quantities involved according 10 an 
extension of the method of Glowinski and Pironneau for the biharmonic problem. Time integration 
schemes and iterative algorithms are introduced which require the solution only of banded linear 
systems of symmetric type. The proposed finite element formulation is compared with its finite 
diSference equivalent by means of a few numerical examples. The results obtained using 4-noded 
bilinear elements provide an illustration of the superiority of the finite element based spatial 
discretization. 

KI'Y WORDS Finite elements wavier-Stokes Vorticity-stream function Time-dependent flows Boundary 
conditions Incompressible viscous flows Two-dimensional flows 

INTRODUCTION 

A major difficulty in the numerical solution of the Navier-Stokes equations in terms of the 
vorticity and stream function variables is due to the absence of boundary conditions for the 
vorticity. In fact, the specification of the velocity at the boundary translates into boundary 
conditions for the stream function and its normal derivative. This introduces a coupling 
between the vorticity and stream function equations which is additional to the one coming 
from the non-linear advection term in the vorticity transport equation. Therefore, even in 
the linear case o f  Stokes' flows, one is faced with the problem of solving a system of two 
second-order partial differential equations, which is essentially a single fourth-order partial 
differential equation. Such a difficulty can bc circumvented when the vorticity and stream 
function equations are solved via the finite difference method (FDM), in SO far as this 
discretization procedure is well suited either to a direct imposition of the two boundary 
conditions for the stream function' or to an iterative evaluation of the vorticity at the 
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and this is probably the reason why most numerical solutions of the vorticity- 
stream function equations still employ finite differences. 

On the other hand, in the finite element method ( E M )  the absence of essential or natural 
boundary conditions for the vorticity poses in general greater difficulties to the numerical 
analyst. (For an attempt at employing the FD artifices in an F E  context see Reference 5) .  In 
fact, in order to establish appropriate finite element equations, special interpolation polyno- 
mials, assuring the continuity of the stream function first derivatives at interelement 
boundaries, have to be used, consistent with the effective fourth-order character of the 
differential problem. The resulting procedure, although feasible and clearly im~lemented ,~ ,~  
is certainly much more cumbersome than the one relying on the solution of second-order 
equations. Other finite element researchers have eliminated the aforementioned difficulty by 
using a mixed approach,'-'' which requires neither boundary conditions for the vorticity nor 
higher-order continuity of the stream function interpolation. However, the resulting system 
of algebraic equations contains all the nodal values of both the stream function and the 
vorticity as unknowns and it may soon become too large to be handled when a fine resolution 
is sought. It is for these reasons that the finite element method, more than the finite 
difference method, can benefit from the availability of integral conditions for the vorticity 
and of the consequent split formulation of the vorticity and stream function  equation^.'^-'^ 
For the case of steady-state creeping flows, Glowinski and Pironneau'' have developed a 
clean finite element method to solve directly the biharmonic equation, essentially as a 
system of two Poisson equations, each being supplemented by its own conditions of integral 
and boundary type, respectively. The extension of such an approach to the complete 
time-dependent non-linear equations being not available to date, it appears very worthwhile 
to provide a finite element formulation which takes full advantage of the integral conditions 
for the vorticity and is capable of dealing with boundary conditions of general type, as done 
in the present paper. 

The Navier-Stokes equations are written in a weak form together with the integral 
vorticity conditions. A simple two-level finite difference scheme is used for the time 
discretization focusing the attention on the most effective way of solving possibly non- 
symmetric and non-linear finite element equations. A single general algorithm for the 
solution of the aforementioned equations is presented which consists of an iterative proce- 
dure dealing only with banded linear systems of symmetric type. The validity and potentiality 
of the proposed approach is demonstrated by means of a few numerical tests. The results 
obtained using isoparametric 4-noded quadrilateral elements compare favourably with the 
finite difference results obtained on a twice finer mesh. 

VORTICITY-STREAM FUNCTION EQUATIONS WITH GENERAL 
BOUNDARY CONDITIONS 

Let R be a simply connected bounded domain of the plane with a smooth boundary r. The 
two-dimensional motion of a viscous incompressible fluid can be described in terms of the 
vorticity and stream function variables, 6 and I,!J, by the dimensionless time-dependent 
Navier-stokes equations 

at; -V2{/Re+-+J({, + ) = O  
at 
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Table I 

I I I 

where Re is the Reynolds number and J(5, +) -a(<, +)/a(x, y )  is the Jacobian. We denote by 
rL, 1 = 0,1, . . . ,4 ,  the parts of r on which different boundary conditions are prescribed: To is 
characterized by two conditions for the variable +, whereas the remaining parts FL,  2>0, 
allow for all combinations of Dirichlet and Neumann boundary conditions for 5 and +, as 
indicated in Table I. 

We denote by r D c  and r N c  (resp. TD+ and rN+) the portions of r at which Dirichlet and 
Neumann conditions are prescribed for 5 (resp. $), namely, 

Notice that, since there is a double specification for + on ro,T0$rNJl and r =  
To U r D c  U rNC = TDa U r N @  We point out that all the aforementioned conditions are consi- 
dered for the sake of generality, even though the crucial point in order to formulate the 
Navier-Stokes equations in split form is to transform the Neumann boundary conditions for 
+ on ro (where a Dirichlet boundary condition for + is also prescribed) into an independent 
conditioning for the vorticity. Such vorticity conditions turn out bo be of an integral 
character, as demonstrated by the following theorem. 

Theorem 

if and only if 

for any harmonic function r, which is the solution of the problem: for each s E To find q such 
that 

v2q = 0 ( 4 4  

r,lr,,=a(s-s), sEro (4b) 

IrDr\ro = 0 (4c) 

This theorem can be proven by means of Green's formula much in the same manner as the 
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theorem given by Quartapelle and Valz-Gris.13 By virtue of the integral vorticity conditions 
(3), equations (1) and (2) can be split, as far as the respective conditioning is concerned, into 
the following form 

at; -V2{/Re+-++(c, + ) = O  
at 

( 5 4  

where q is any harmonic function defined by problem (4). 

TIME-DISCRETIZED EQUATIONS AND ALGORITHMS 

Starting from equations (5)  and (6), discrete approximations and numerical algorithms for 
the calculation of steady and unsteady flows can be derived. For simplicity, we use a 
two-level finite difference time discretization, as follows: 

(-V2+ e){"+'+ Re J(c, +') = el" (7a) 

where e = Re/At, a"+' = a(t"+l) and similarly for 6,  bo, c, d. An implicit treatment of the 
linear part has been assumed, whereas the non-linear advection part is taken into account 
with an increasing degree of implicitness, depending on the values chosen for r and s: we 
have four possible ~ c h e m e s . ' ~  

Explicit scheme: r = s = n 

The Helmholtz equation (7a) for en+' is supplemented by the integral conditions (7b) and 
boundary conditions of Dirichlet and Neumann type (7c). This equation is independent of 
the Poisson equation (Sa) for I,V"'l which is supplemented by boundary conditions (8b). The 
two equations can be solved in sequence but the value of time step At  will be restricted by 
stability conditions. 

{-implicit scheme: r = n + 1, s = n 

The vorticity equation is still uncoupled from the Poisson equation for the stream function 
but now, owing to the term J(t;"+l, +"), it contains a non-symmetric and non-constant part 
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which is different at each time level. The two equations can still be solved in sequence. The 
scheme is (linearly) implicit and therefore it will be unconditionally stable except for possible 
non-linear effects. 

$-implicit scheme: r = n, s = n + 1 

The vorticity and stream function equations are now coupled linearly through the term 
J(f",  $"+l) and therefore they must be solved altogether. As far as the numerical stability is 
concerned, the +-implicit scheme has properties similar to the <-implicit scheme. 

Implicit scheme: r = s = n + 1 

In this case the equations are coupled together non-linearly through the advection term 
J(5"", $"+l) and an iterative method of solution is required. The time integration scheme is 
unconditionally stable even with respect to non-linear instabilities. 

In order to solve the non-linear equations of the implicit scheme, we use an iterative 
algorithm which deals only with symmetric equations independent of the time level. For 
computational convenience such an algorithm is also used for solving the non-symmetric 
advective part of the linear equations of the 5- and $-implicit schemes, iteratively. The 
solution (5, $)"+' is obtained as the limit of the sequence (5, $)", rn = 0,1, . . . , calculated as 
follows. Start from (5, $)"=O = (5, $)". Then, from c", (a, b, b,,, c, d)"+' and (5, determine 
i+"'" and qjm+' as the solutions of the equations 

(-V2 + e)cmtl = e5" - R e  J([", q j q )  (94 

The iterative process is terminated when 

ll(d $Irni1 - (5, $)"It =s E 

for some norm and a small positive constant E. According to the values chosen for p and q in 
the vorticity equation (9a), such an algorithm solves the equations of the three different 
schemes: 

p = m, q = n:  the iteration defined by equations (9a)-(9c) solves the vorticity equation of 

p = n, q = m :  the iteration defined by equations (9) solves the linear system of the two 

p = rn, q = rn: the iteration (9) solves the non-linear system of the two equations of the 

the 5-implicit scheme 

coupled equations of the +-implicit scheme 

implicit scheme. 
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VORTICITY EQUATION WITH MIXED INTEGRAL AND 
BOUNDARY CONDITIONS 

The vorticity equations to be solved in all of the present schemes have the typical form 

(-V2+e)t; = f  (104  

where t; is the unknown and f = e l ”  -Re J(t;’, 4“) is known. In order to solve the linear 
problem (10) we use the following decomposition scheme. The solution is written in the form 

5 = 4+ 1 At’ ,  (11) 

(-v2+e)(’= 0 ( m  

where, for each s ’ E ~ ~ ,  C’ is the solution of the homogeneous problem 

(12b) 

and is the solution of the non-homogeneous problem 

(-V2+e)[=f 

By imposing that the vorticity C satisfies the integral conditions (lob), we obtain the 
following linear problem for the unknown h 

A h = @  (14) 

where A and 0 are defined by 

A(s,s’)= h 5‘q 

and 

respectively. By means of Green’s formula, it is possible to show that the operator A is 
symmetric. We notice in passing that this decomposition scheme can be regarded, in the 
spatially discretized case, as a block Gaussian elimination exploiting the special structure of 
the linear system of the algebraic equations (10). 

GLOWINSKI-PIRONNEAU METHOD 

The evaluation of A and p directly from equations (15) and (16) is computationally not 
convenient since in these expressions explicit reference is made to the harmonic functions q. 
Glowinski and Pironneau have demonstrated for the biharmonic equation15 that A and /3 
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can also be characterized equivalently without any reference to q at the expense of 
doubling the number of elliptic equations to be solved. Their method is extended here to the 
case of the time-dependent equations supplement by general boundary conditions. In place 
of the harmonic functions q defined by problem (4), for each s €To a function is introduced 
which satisfies the same boundary conditions (4b)-(4d) but is otherwise arbitrary in iR, i.e. 

Then, for each S’E To the following two elliptic problems for 5’ and $‘ are solved in sequence 

(-V2+e)(’ = 0  

and 

By virtue of Green’s formula, it can be shown that equation 

A(s, s’) = la ((’w -V$’. Vw)  

(15) implies that 

In a similar way, the two following equations for and I$ are solved 

(-V2 + e ) t  = f 

so that p can be evaluated through the expression 

p ( s )  = - h (zw -V&. Vw)- 1 bow 
0 

After the linear problem 
AX=P 

has been solved, the sought solutions to the vorticity equation (10) and to the stream 
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function equation are obtained from the equations 

( -V2+e)c=f  

-v2+ = 5 

WEAK FORM OF THE EQUATIONS 

Let H1(fl) be the standard Sobolev space of scalar functions defined on fl which are square 
integrable together with their first-order derivatives. Furthermore, let H&(fl) be the space of 
functions cp E H'(fl) which vanish on the part r" of the boundary r of 0, i.e. such that 
q[r* = 0. In addition, (cp, cp') indicates the Hilbert scalar product in the space L2(fl) and 
(cp, cp') denotes the scalar product in the space (L2(fl))' of square integrable vector functions 
with two components. By means of standard methods, we can restate problems (18) and (19) 
in a variational form as follows: for each s'EI'~, find c'~H'(fl)  such that 

(VC, Vcp) + e(C', cp> = 0, vcp EH:o,r,,(fl> (274 

respectively. - In a similar way, problems (21) and (22) become: given f ,  c, and d, find 
5 E H1(fl) such that 

and, given c, a and b, find $ E  H1(fl) such that 

(~4, vcp> = (C cp) + J bcp, vcp E ~+,*(a) 
r N *  

- 41rD1 - a 
Using the scalar product notation, equations (20) and (23) read 

A(s, s') = (c', w)-(V+', VW) 
and 

P ( S )  = -(C w) + F$, VW) - J bow (32) 

respectively. The weak form of problems (25) and (26) can be obtained similarly, 
The discretized form of the weak problems considered so far can be obtained by standard 

methods by replacing the space H1(fl) with some finite dimensional counterpart. A spatial 
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discretization based on quadrilateral finite elements of Lagrangian type is considered for the 
numerical application of the present formulation. 

EFFECT OF SPATIAL DISCRETIZATION 

As a viable means of investigating the effect of the spatial 
comparing the FE and FD approximations, we study the 
dimensional model problem 

discretization process and 
following linearized one- 

w and y being arbitrary constants. For a uniform mesh of piecewise linear finite elements of 
size h, the standard Galerkin method provides the following semi-discrete equations for the 
nodal values & ( t )  and t,+(t), j = . . . 0, 1, . . . 

W Y 
h h2 

(I+ p ~ ) [ j  +- A + ~  -- otj = o 

1 
h2 

-- DrC,j = 5, 

(35) 

where p = 2, the upper dot denotes time derivative, Aui = (u,+~ - uj-&/2 and Du, = 
ui+l- 224, + uj-l. For p = 0 equations (35) and (36) also provide the standard finite difference 
approximation to equations (33) and (34). Assuming an initial condition of the form [(x, t = 
0) = teikx, the exact solution of the continuum problem is found to be ((x, t )  = [eikX-*', rC, = 
[ /k2  where h = 6 + iw = yk2+ iw/k. Furthermore, the exact solution of the semi-discrete 
problem is of the form 

ci(t) = t((t)eikjh, +,.(t) = &(t)eikjh (37) 

By substituting equations (37) into equations (35) and (36) and eliminating & in favour of 
we obtain the following single ordinary differential equation for r ( t )  

sin 6 Y 
~ ( C O S  6 - 1) h 

[I + 2p(cos 6 - 1)1t+ iwh 5-T 2(cos 5- 1)4= 0 

where E = kh is the dimensionless wave number. The solution of equation (38) is of the form 

Z ( t )  = (39) 

to being an arbitrary constant (the initial amplitude of the wave) and 1 the semi-discrete 
response complex variable 

h=s+iG (40) 

and 0 are given in terms of their continuum counterparts S and o, by 

s 2(1- cos E)/'$2 

s 1-2p(l-cos5) 
-= 

6 
0 1-2p(l-cos5) 

6 sin 6/[2(1- cos 5>] _ -  - 
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By analysing the dependence of the damping ratio @S and of the frequency ratio WIw versus 
6, it is possible to assess the influence of the spatial discretization on the attenuation and 
propagation of signals of different wavelengths. 

For the case of pure diffusion (w = W =O), Figure l(a) shows that the effect of the FE 
discretization is to increase the damping with respect to exact value at intermediate and short 
wavelengths. On the contrary, finite differences are seen to reduce the damping particularly 
in the range of high spatial frequencies. 

In the case of pure advection ( y =  $GO), Figure l(b) shows that for wavelengths of 
practical interest the finite elements produce an increase of the speed of propagation whereas 
the finite differences have an opposite effect of about the same magnitude. This result is 
somewhat unexpected because it contrasts with the well known results for the ‘standard’ 
advection equation = 0 (IJ = a constant) shown in Figure l(c). In this case both 
discretizations decrease the propagation speed, the F E  approximation being clearly 
superior.16 In the mixed case of advection and diffusion, it results that xm = 6+ iW so that 
the following picture emerges for the coupled (-4 equations. Intermediate wavelengths are 
propagated at a higher speed and are overdamped by FEs whereas they are propagated 

i3 - 
w 

FE 

1 

0 
0 t 

(C) 

Figure 1. Comparison of finite element and finite difference spatial discretizations of one-dimensional model 
equations. Semi-discrete response parameters versus the dimensionless wavenumber 5: (a) diffusion equation; 

(b) advection equation; (c) standard advection equation 
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slower and are underdamped by FDs. On the other hand, high spatial frequencies have a 
lower speed in both discretizations but this misrepresentation is still attenuated by FE 
whereas it is enhanced by FD. 

Furthermore, by writing the advection term (coupling the two equations) in the non-linear 
form &!J~, we can compare finite elements and finite differences also with respect to the 
approximation of the fully non-linear equations. The application of the standard Galerkin 
method to the term tXGx provides at the node j 

which is a centred approximation averaged on two neighbouring elements. Instead, the 
standard finite difference approximation of txQx is 

1 
-(&+I - 4h2 

i.e. the usual second-order discretization. The superiority of the Galerkin FE method over 
the standard FD one is evident. 

Thus, the FE discretization is expected to be globally superior. This has been confirmed by 
the numerical solutions of the full vorticity-stream function equations to be presented in the 
next section. 

NUMERICAL EXAMPLES AND COMPARISONS 

All the computations presented in this section have been performed using single-precision 
arithmetic (IBM 370-165) except for double-precision accumulation of scalar products in the 
LLT factorization of the banded or full symmetric matrices. The convergence criteria used in 
all of the following numerical examples are based on the infinite norm, i.e. &pll =max (qj}  and 

First, the classical driven cavity problem" has been considered, for which a one-to-one 
comparison with the results obtained by the equivalent method using finite differences14 is 
possible. Transient as well as steady-state results are presented, the unsteady flow problem 
being impulsively started from rest. Table I1 gives the number of time steps n and of total 
iterations rn necessary to reach the steady state for Re = 100 and two different values of the 
time step At = 0.1 and At = 1. Three spatial discretizations are considered: FD, a hybrid 
FD-FE approximation l4 and the finite element approximation using isoparametric 4-noded 
quadrilateral elements with all integrals evaluated numerically by the 2 X 2 Gauss product 
formula. The hybrid approximation is basically an FD discretization with the Jacobian 
evaluated according to the Arakawa's second-order nine-point differencing'' which is known 
to be equivalent to a Galerkin approximation using bilinear finite elements. From Table I1 it 
appears that all spatial discretizations and all time integration schemes are equally reliable 
for the smaller value of At, the FD method seeming slightly more rapid in achieving the 
steady state. On the contrary, for the larger value of At, the trend reverses and actually the 
explicit and implicit FD schemes definitely have some difficulty in accurately modelling the 
transient. In addition, the hybrid method is found to have an intermediate behaviour, as 
expected. We have numerically evaluated the total vorticity JdSLt from some of the finite 
element solutions at some selected times. This quantity is physically important, being related 

Il(6 4)ll = max {lltll, Il+ll}. 
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Table 11. Time dependent driven cavity problem. Number of time steps 
n and of total iterations m necessary to reach the steady state within 
u = uniform mesh 8 x 8, A t  = 0.1 (upper part) 

and At = 1 (lower part) 
Re = 100, E = 

FE Hybrid FD 

Time 
integration 

scheme n m n m n m 
~ 

Explicit 93 - 82 - 73 - 

Implicit 92 290 83 218 74 211 

<-implicit 92 272 80 193 73 189 
+-implicit 94 121 83 104 75 92 

Explicit 21 - 17 - 75 - 
<-implicit 12 117 14 62 17 92 
$-implicit 20 44 16 34 41 58 
Implicit 17 120 16 80 15 175 

to  the basic conservation law' 

that follows directly from the equation -V2$ = 5. This law can be regarded as the vorticity 
integral condition with respect to the trivial harmonic function 9 = 1. In the driven cavity 
problem, a$/an = 0 except on the upper wall where a$/& = 1, so that 1 dfl[ = -1. In all cases 
it has been found JdCl=-l with an accuracy of seven significant decimal digits in our 
single-precision calculations. 

In order to assess the accuracy of the proposed method, the profile of the horizontal 
velocity u, along the vertical centreline of the cavity for Re = 100 at various times and at the 
steady state, obtained with a uniform mesh of 16x 16 elements, is compared with the 
corresponding results obtained with the FD method employing standard second-order 
centred differences on the meshes 16 x 16 and 32 X 32. The results given in Figure 2 clearly 
indicate the superior accuracy of the FE spatial discretization. In Table I11 we report the 
stream function value at, and the position of, the centre of the main vortex for Re = 100 at 
t = 0.5, 1, 1.5 and 2. The transient is modelled by the FE method in fair agreement with the 
FD solution calculated using a twice finer mesh. For completeness, the vorticity contours and 
the streamlines at the same times are presented in Figure 3. 

In order to investigate the robustness of the method, the case R e =  1000 has been 
attempted with the rather coarse uniform mesh 16x 16. In contrast with the second-order 
accurate FD approach which was never able to converge on this mesh, the present FE 
method is capable of providing a transient solution which is depicted in Figure 4. In spite of 
visible vorticity oscillations near the driving wall, the overall accuracy of this solution is quite 
adequate. For instance, the maximum value of the stream function $=-0-0615 and 

= -0.0759 at t = 5 and t = 10, respectively, are very near to the FD values $ = -0.060 and 
i,!~ = -0.0738 obtained using a fourth-order accurate discretization of the advection term and 
a uniform mesh 32x 32. An analogous agreement is found for the position of the centre of 
the main vortex. The vorticity oscillations in the first three rows of nodes near the driving 
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Figure 2. Horizontal velocity along the vertical centreline in the driven cavity problem: Re = 100; 0 finite elements 
1 6 ~  16; x finite differences 16x 16; -finite differences 32x 32 

wall using the uniform mesh are detailed in Figure 5(a). Node-to-node oscillations are 
present both in the x-direction and in the y-direction. Notice that at the first row of internal 
nodes there is an eveniodd separation of the vorticity values similar to the one predicted by 
Gresho and Lee" for the steady-state solution to the (standard) advection-difision equation 
using an even number of equal linear elements: the even node values match the boundary 
values at both extremes, whereas the odd node values do not. In Figure 5(b) we show how 
the vorticity oscillations are reduced by using a non-uniform mesh. 

Finally, in order to verify the formulation in the presence of boundary conditions for the 
vorticity, we have considered the channel flow problem proposed by Roache.20 

The geometry, the finite element mesh and the boundary conditions are given in Figure 6 
for the case Re = 10. The steady-state vorticity along the lower wall obtained by the implicit 
scheme of the present formulation is given in Figure 7 .  The present numerical solution is 
found to be remarkably close to the one obtained by a fourth-order accurate spline AD1 
technique," using the same mesh. For instance, the separation bubble centre is located at the 
same grid point x = 1.130, y = -0.6645 and the corresponding value of the stream function 
is qb = -0.0011 for both methods. 

Table 111. Main vortex strength and position versus time. Re = 100, $-implicit scheme, 
E = uniform mesh 

FE: 16x16 FD: 32X 32 

0.5 -0.0565 0.6875 0.875 -0.0551 0.6875 0.875 
1.0 -0.0730 0.6875 0.8125 -0.0714 0.65625 0.8125 
1.5 -0.0828 0.6875 0.8125 -0.0812 0.65625 0.8125 
2.0 -0.0883 0.6875 0.8125 -0.0871 0.65625 0.78125 
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Figure 3. Impulsively started flow in a square cavity at t = 0.5, 1, 1.5 and 2: Re = 100, $-implicit scheme, At = 0.05, 
uniform mesh 16 X 16 
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Figure 4. Impulsively started flow in a square cavity at t = 5 and t = 10: Re = 1000, $-implicit scheme, At = 0.05, 
uniform mesh 16X 16 
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Figure 5. Vorticity profiles at, and near to, the driving wall in the impulsively started flow in a square cavity. 
Re = 1000, t = 5, $-implicit scheme, At = 0.05, uniform mesh (left) and non-uniform mesh (right) 16 X 16 
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B =  ‘(3y*-y3) 2 

-=  0 
an - 

X 

- z o  

= O  

Figure 6. Channel flow geometry, mesh and boundary conditions for Re = 10 

r 

Figure 7. Wall vorticity of the channel flow problem for Re = 10 at the steady state within u = Implicit 
scheme, F = lo-’, At = 0-1, n = 63 and m = 203 

CONCLUSIONS 

A finite element method for calculating two-dimensional incompressible viscous flows has 
been presented in which the unsteady vorticity-stream function equations are solved as a 
cascade of elliptic (Helmholtz and Poisson) problems. This has been made possible by means 
of integral conditions for the vorticity allowing a splitting of the Navier-Stokes equations. 
The robustness and validity of the present formulation have been demonstrated by a few 
numerical examples which have shown the superiority of the spatial discretization by bilinear 
finite elements over FD discretizations of the same order of accuracy. The present method 
can be easily extended to axisymmetric flowsl3 and to natural convection problems. 
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